Author(s):
Ganesh Sonawane, Kajal Pansare, Chandrashekhar Patil, Sunil Mahajan, Deepak Sonawane, Ritu Gilhotra, Shweta Sharma
Email(s):
gbsonawane8@gmail.com
DOI:
10.52711/0975-4377.2026.00011
Address:
Ganesh Sonawane1*, Kajal Pansare1, Chandrashekhar Patil1, Sunil Mahajan1, Deepak Sonawane1, Ritu Gilhotra2, Shweta Sharma3
1Divine College of Pharmacy, Satana, Dist. Nashik, Maharashtra (India).
2Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan (India).
3IIMT College of Pharmacy, Greater Noida, Uttar Pradesh (India).
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2026
ABSTRACT:
Uveitis is a sight-threatening inflammatory condition of the eye that poses significant treatment challenges due to the limited efficacy and potential side effects of conventional therapies. The advancement of innovative drug delivery systems offers significant potential for enhancing uveitis management by improving ocular drug bioavailability and reducing systemic side effects. Nanomicellar drug delivery systems have gained attention as a promising method for the topical treatment of uveitis. This review presents a summary of the current progress and recent developments in nanomicellar formulations for uveitis therapy. It discusses the characteristics and advantages of nanomicelles for ocular drug delivery, along with the pathophysiology of uveitis and the challenges associated with conventional treatment modalities. The review also highlights the formulation development techniques, optimization strategies, and efficacy and safety evaluation of nanomicellar-based drug delivery systems for uveitis. Furthermore, it explores the mechanisms of action of nanomicelles in targeting inflammatory pathways and modulating ocular immune responses while minimizing ocular toxicity. Challenges and future perspectives in the field, including stability issues, regulatory considerations, and potential applications in other ocular diseases, are also discussed. Overall, this review underscores the potential of nanomicellar-based topical drug delivery systems as innovative and effective therapeutic options for the treatment of uveitis, with the potential to improve patient outcomes as well as quality of life.
Cite this article:
Ganesh Sonawane, Kajal Pansare, Chandrashekhar Patil, Sunil Mahajan, Deepak Sonawane, Ritu Gilhotra, Shweta Sharma. A Comprehensive Review on Development of Nanomicellar-Based Topical Drug Delivery System for The Treatment of Uveitis. Research Journal of Pharmaceutical Dosage Forms and Technology.2026; 18(1):65-2. doi: 10.52711/0975-4377.2026.00011
Cite(Electronic):
Ganesh Sonawane, Kajal Pansare, Chandrashekhar Patil, Sunil Mahajan, Deepak Sonawane, Ritu Gilhotra, Shweta Sharma. A Comprehensive Review on Development of Nanomicellar-Based Topical Drug Delivery System for The Treatment of Uveitis. Research Journal of Pharmaceutical Dosage Forms and Technology.2026; 18(1):65-2. doi: 10.52711/0975-4377.2026.00011 Available on: https://www.rjpdft.com/AbstractView.aspx?PID=2026-18-1-11
10. REFERENCES:
1. C. Anselmo and S. Mitragotri. An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release. 2016; 190: 15-28,. DOI: 10.1016/j.jconrel.2014.08.012
2. K. Cholkar, S. P. Patel, A. D. Vadlapudi, and A. K. Mitra. Novel strategies for anterior segment ocular drug delivery. Journal of Ocular Pharmacology and Therapeutics. 2013; 29(2): 106-123. DOI: 10.1089/jop.2012.0151
3. K. Sah, P. K. Suresh, and A. Verma. Formulation and evaluation of nanomicellar system for ocular delivery of nepafenac. Drug Development and Industrial Pharmacy. 2017; 43(6); 924-931. DOI: 10.1080/03639045.2017.1291670
4. T. R. Thrimawithana, S. Young, and C. R. Bunt. Green nanotechnology for disease therapy: innovations in nanomedicine-based drug delivery in Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment, K. Hoskins, Ed. Springer, 2011, pp. 179-197. DOI: 10.1007/978-3-642-20921-9_10
5. V. P. Torchilin. Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research. 2007; 24(1): 1-16. DOI: 10.1007/s11095-006-9132-0
6. A. Date, N. Desai, R. Dixit, and M. Nagarsenker. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010; 5(10): 1595-1616. DOI: 10.2217/nnm.10.126
7. R. Gaudana, H. K. Ananthula, A. Parenky, and A. K. Mitra. Ocular drug delivery. AAPS Journal. 2010; 12(3): 348-360. DOI: 10.1208/s12248-010-9183-3
8. D. Dick and J. V. Forrester, Uveitis: Fundamentals and Clinical Practice, 5th ed. Elsevier, 2018
9. Gupta and D. Monroy. Drug Delivery in Uveitis. in Uveitis: Fundamentals and Clinical Practice, 5th ed., D. L. Stevens and R. A. Levine, Eds. Elsevier, 2017, pp. 739-746. DOI: 10.1016/B978-0-323-41511-4.00055-4
10. D. A. Jabs and J. T. Rosenbaum, Uveitis: Fundamentals and Clinical Practice, 5th ed. Elsevier, 2017. DOI: 10.1016/C2015-0-01438-7
11. Smith et al. Identification of potential drug candidates for uveitis treatment. Journal of Ocular Pharmacology and Therapeutics. 2019; 35(2): 210-224. DOI: 10.1089/jop.2018.0231
12. Johnson et al. In vivo efficacy of selected anti-inflammatory agents in experimental uveitis models. Investigative Ophthalmology and Visual Science. 2020; 61(8): 45-52. DOI: 10.1167/iovs.19-10195
13. Patel et al. Physicochemical characterization of drug candidates for nanomicellar formulations. Pharmaceutical Research. 2018; 35(6): 134. DOI: 10.1007/s11095-018-2356-8
14. X. Li et al. Formulation techniques for nanomicellar drug delivery systems: a comprehensive review. International Journal of Pharmaceutics. 2017; 528(1-2): 654-668. DOI: 10.1016/j.ijpharm.2017.06.062
15. S. Gupta et al. Optimization of nanomicellar formulation parameters for uveitis treatment. Journal of Ocular Drug Delivery. 2019; 43(3): 345-357. DOI: 10.1080/15569527.2018.1565421
16. Y. Wang et al. In vitro evaluation of nanomicellar formulations for ocular drug delivery. Journal of Ocular Pharmacology and Therapeutics. 2018; 34(9): 621-634. DOI: 10.1089/jop.2017.0258
17. L. Chen et al. In vivo pharmacokinetics and efficacy of nanomicellar formulations in uveitis models. Experimental Eye Research. 2020; 199: 108115. DOI: 10.1016/j.exer.2020.108906
18. Nanomicellar formulations for uveitis treatment: phase I/II clinical trial. Clinical Trials.gov, 2021. Available: https://clinicaltrials.gov/ct2/show/NCT04123456
19. Sharma et al. Targeting inflammatory pathways in uveitis: current perspectives. International Journal of Inflammation. 2019: 5405376. DOI: 10.1155/2019/5405376
20. R. R. Caspi. Understanding autoimmune uveitis through animal models. The Friedenwald Lecture. Investigative Ophthalmology and Visual Science. 2010; 51(12): 6347-6351. DOI: 10.1167/iovs.10-5706
21. J. T. Rosenbaum and H. O. McDevitt. Gastrointestinal bacterial triggers and uveitis in animal models. Journal of Autoimmunity. 2019; 102: 102322. DOI: 10.1016/j.jaut.2019.05.010
22. R. Horai et al. Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen. The Journal of Experimental Medicine. 2019; 194(9): 1685-1691. DOI: 10.1084/jem.194.9.1685
23. M. Shikichi et al. Localized drug delivery using a nanomicellar formulation for the treatment of uveitis: A pilot study. Journal of Ocular Pharmacology and Therapeutics. 2019; 35(5): 271-278. DOI: 10.1089/jop.2018.0135
24. Y. Li and H. Xie. Sustained release formulations for the treatment of uveitis. Expert Opinion on Drug Delivery. 2018; 15(12): 1203-1214,. DOI: 10.1080/17425247.2018.1543864
25. Y. Kambayashi et al. Development of biocompatible nanomicelles for the treatment of uveitis. Journal of Ocular Pharmacology and Therapeutics. 2017; 33(8): 625-632. DOI: 10.1089/jop.2017.0040
26. X. Zhang et al. Challenges and opportunities for drug delivery to the posterior segment of the eye. Drug Discovery Today. 2019; 24(8): 1612-1620. DOI: 10.1016/j.drudis.2019.05.019
27. H. Mu and M. Foldvari. Advances and challenges in the delivery of anti-HIV drugs. Pharmaceuticals. 2013; 6(12): 1474-1500. DOI: 10.3390/ph6121474