Author(s):
Sagar P. Deshmukh, Shivraj P. Jadhav, Anil S. Thakare, Mayur S. Bhamare, Rushikesh L. Bachhav, Sunil K. Mahajan
Email(s):
sd883290@gmail.com
DOI:
10.52711/0975-4377.2025.00041
Address:
Sagar P. Deshmukh1*, Shivraj P. Jadhav2, Anil S. Thakare1, Mayur S. Bhamare3, Rushikesh L. Bachhav3, Sunil K. Mahajan2.
1Department of Industrial Pharmacy, SSS’s Divine College of Pharmacy, Nampur Road, Satana, Nashik, Maharashtra, India 423301.
2Department of Pharmaceutics, SSS’s Divine College of Pharmacy, Nampur Road, Satana, Nashik, Maharashtra, India 423301.
3Department of Pharmaceutical Quality Assurance, SSS’s Divine College of Pharmacy, Nampur Road, Satana, Nashik, Maharashtra, India 423301.
*Corresponding Author
Published In:
Volume - 17,
Issue - 4,
Year - 2025
ABSTRACT:
The development of amorphous drug systems represents a transformative approach to address one of the most persistent challenges in pharmaceutical science—poor aqueous solubility and limited bioavailability of drug candidates. Unlike their crystalline counterparts, amorphous forms possess higher free energy and greater molecular mobility, enabling superior dissolution rates and enhanced absorption. However, their thermodynamic instability introduces formulation and stability challenges that require meticulous design and evaluation. This review systematically explores the theoretical foundation and practical considerations in the formulation of amorphous drugs. Beginning with the fundamental properties of amorphous solids, the discussion progresses to the rationale for amorphization, particularly in the context of Biopharmaceutics Classification System (BCS) class II and IV drugs. Multiple formulation strategies are evaluated, including amorphous solid dispersions, co-amorphous systems, cryogenic milling, and emerging solvent-free technologies. Each approach is discussed in terms of molecular stabilization, scalability, and excipient compatibility. Advanced techniques like XRPD, DSC, TGA, FTIR, NMR, SEM, and AFM are essential in characterizing amorphous drug systems. These methods help confirm the amorphous state, assess stability, and detect drug-excipient interactions. Recrystallization under environmental stress is a major concern, but polymers and co-formers can enhance stability. On the industrial side, quality control and scale-up remain key challenges. Regulatory frameworks such as Quality by Design (QbD) guide systematic development. Looking forward, nanotechnology, AI, and modeling tools are expected to improve the precision and personalization of amorphous drug formulations.
Cite this article:
Sagar P. Deshmukh, Shivraj P. Jadhav, Anil S. Thakare, Mayur S. Bhamare, Rushikesh L. Bachhav, Sunil K. Mahajan. Technique to Formulation of Amorphous Drug. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(4):293-1. doi: 10.52711/0975-4377.2025.00041
Cite(Electronic):
Sagar P. Deshmukh, Shivraj P. Jadhav, Anil S. Thakare, Mayur S. Bhamare, Rushikesh L. Bachhav, Sunil K. Mahajan. Technique to Formulation of Amorphous Drug. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(4):293-1. doi: 10.52711/0975-4377.2025.00041 Available on: https://www.rjpdft.com/AbstractView.aspx?PID=2025-17-4-11
10. REFERENCES:
1. Markad MH, Mankar SD. Review on: Solubility enhancement of poorly water-soluble drugs. Asian J Res Pharm Sci. 2022; 12(3): 231-7.
2. Seftian M, Laksitorini MD, Sulaiman TNS. Enhancement of valsartan solubility by amorphous solid dispersion ternary system: an optimization and characterization. Res J Pharm Technol. 2024; 17(8): 3717-23.
3. Jadhav YL, Parashar B, Ostwal PP, Jain MS. Solid dispersion: solubility enhancement for poorly water-soluble drug. Res J Pharm Technol. 2012; 5(2): 190-6.
4. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002; 231(2): 131-43.
5. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001; 48(1): 27-42.
6. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008; 97(4): 1329-48.
7. Bhairav BA, Bachhav JK, Saudagar RB. Review on solubility enhancement techniques. Asian J Pharm Res. 2016; 6(3): 147-52.
8. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000; 17(4):397-403.
9. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995; 12(3): 413-20.
10. Löbmann K, Strachan CJ. The use of co-amorphous systems to improve the performance of poorly water-soluble drugs. Int J Pharm. 2020; 589: 119912.
11. Seftian M, Laksitorini MD, Sulaiman TNS. Enhancement of valsartan solubility by amorphous solid dispersion ternary system: an optimization and characterization. Res J Pharm Technol. 2024; 17(8): 3717-23.
12. Markad MH, Mankar SD. Review on: Solubility enhancement of poorly water-soluble drugs. Asian J Res Pharm Sci. 2022; 12(3): 231-7.
13. Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Co-amorphous systems: a product development perspective. Int J Pharm. 2016; 515(1-2): 403-14.
14. Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016; 100: 116-24.
15. Liu C, Desai KG, Chen X, Park H. Mechanochemical preparation and characterization of amorphous pharmaceuticals: an overview. Drug Dev Ind Pharm. 2020; 46(5): 759-67.
16. York P. Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today. 1999; 2(11): 430-40.
17. Katta N, Narala S, Kallakunta VR, Jablonski MM, Boddu SHS, Mitra AK. Nano-amorphous formulations: a promising strategy for improving oral bioavailability of poorly soluble drugs. Pharmaceutics. 2020; 12(10): 885.
18. Lee SL, O'Connor TF, Yang X, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. 2015; 10(3): 191-8.
19. Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008; 97(11): 4840-55.
20. Ahmad W, Sheikh R, Ahmad R, Khan S. Methods for improving the solubility of water-insoluble drugs: a comprehensive review. Res J Pharm Dosage Forms Technol. 2022; 14(4): 309-14.
21. Kapourani A, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Determination of the physical state of a drug in amorphous solid dispersions using artificial neural networks and ATR-FTIR spectroscopy. Int J Pharm X. 2020; 2: 100063.
22. Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006; 95(8): 1641-64.
23. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997; 86(1): 1-12.
24. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001; 48(1): 27-42.
25. Jadhav SP, Ahire SM, Shewale VV, Patil CD, Pagar RY, Sonawane DD, Mahajan SK. Formulation of tablet of nifedipine co-crystal for enhancement of solubility and other physical properties. Biosci Biotechnol Res Asia. 2025; 22(1): 191-200.
26. Dharani S, Mohamed EM, Khuroo T, Rahman Z, Khan MA. Formulation characterization and pharmacokinetic evaluation of amorphous solid dispersions of dasatinib. Pharmaceutics. 2022; 14(11): 2450.