Author(s):
Shivangi Das, Nandani Kewat, Geetanjali Sahu
Email(s):
shividas24@gmail.com , nandanikewat15@gmail.com , geetanjali.sahu574@gmail.com
DOI:
10.52711/0975-4377.2025.00040
Address:
Shivangi Das1*, Nandani Kewat1, Geetanjali Sahu2
1M. Pharma (Pharmaceutics), School of Pharmacy, Chouksey Engineering College, Lalkhadan, Bilaspur, Chhattisgarh, Pincode - 495004.
2Assistant Professor (Pharmaceutics), School of Pharmacy, Chouksey Engineering College, Lalkhadan, Bilaspur, Chhattisgarh, Pincode - 495004.
*Corresponding Author
Published In:
Volume - 17,
Issue - 4,
Year - 2025
ABSTRACT:
Wet age-related macular degeneration (wet AMD) is a prevalent retinal disease characterized by abnormal growth of blood vessels beneath the macula, leading to vision loss. Current treatment modalities such as intravitreal injections pose challenges related to frequent administration and potential complications. In-situ gel formulations offer a promising alternative for sustained drug delivery directly to the affected site. This review discusses the formulation strategies and evaluation parameters for in-situ gels designed for the treatment of wet AMD, highlighting their potential advantages and challenges. Key factors influencing the gel properties, including gelation mechanism, biocompatibility, and drug release kinetics, are elucidated. Furthermore, recent advancements in polymer science and nanotechnology have enabled the development of innovative formulations with enhanced therapeutic efficacy and patient compliance. Future directions in research and clinical applications of in-situ gels for wet AMD management are also addressed, emphasizing the need for comprehensive preclinical and clinical studies to validate their safety and efficacy.
Cite this article:
Shivangi Das, Nandani Kewat, Geetanjali Sahu. Formulation and Evaluation of In-Situ Gel for the Treatment of Wet Age-Related Macular Degeneration. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(4):286-2. doi: 10.52711/0975-4377.2025.00040
Cite(Electronic):
Shivangi Das, Nandani Kewat, Geetanjali Sahu. Formulation and Evaluation of In-Situ Gel for the Treatment of Wet Age-Related Macular Degeneration. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(4):286-2. doi: 10.52711/0975-4377.2025.00040 Available on: https://www.rjpdft.com/AbstractView.aspx?PID=2025-17-4-10
REFERENCES:
1. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997; 154(2): 123-140.
2. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005; 4(2): 145-160.
3. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004; 428(6982): 487-492.
4. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006; 58(14): 1532-1555.
5. Miyazaki S, Endo K, Kawasaki N, Kubo W, Watanabe H, Attwood D. Oral sustained delivery of paracetamol from in situ gelling xyloglucan formulations. Drug Dev Ind. Pharm. 2003; 29(2): 113-9.
6. Nerkar T, Gujarathi N, Rane B, Bakliwal S, Pawar S. In situ gel: Novel Approach in sustained and controlled drug delivery system. International Journal of Pharmaceutical Sciences. 2013; 4(4): 1-18.
7. Saraswat R, Bhan C, Gaur A. A Review on Polymers Used In In-Situ Gel Drug Delivery Systems. 2011; 1(2).
8. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017; 122: 31-64.
9. Motto F, Gailloud P, et al. In-vitro assessment of new embolic liquids prepared from preformed polymers and water miscible solvents aneurysm treatment. Biomaterials. 2000; 21: 803-11.
10. Esposito E, Carratto V et al. Comparative analysis of tetracycline containing dental gels; poloxomers and mono-glycerides based formulation. Int.J.Pharm.1996; 142: 9-23.
11. Grasdalen H, Smidsroed O. Gelation of gellan gum. Carbohydrate Polymers. 1987; 7: 371-93.
12. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000.
13. Nirmal HB, Bakliwal SR, Pawar SP. In-Situ gel: New trends in Controlled and Sustained Drug Delivery System International Journal of Pharm Tech Research.
14. Bromberg LE, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev. 1998; 31: 197-221.
15. Varshosaz J, Tabbakhian M, Salmani Z. Designing of a Thermosensitive Chitosan/Poloxamer In Situ Gel for Ocular Delivery of Ciprofloxacin. The Open Drug Delivery Journal. 2008: 61-70.
16. Srividya B, Rita M, Cardoza P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. Journal of Controlled Release. 73 :2001: 205–211.
17. Gupta H, Jain S, Mathur R, Mishra P, Mishra A, Velpandian T. Sustained Ocular Drug Delivery from a Temperature and pH Triggered Novel in Situ Gel System. Drug Delivery. 14: 8; 507-515.
18. Wang Y, Challa P, Epstein DL, Yuan F. Controlled release of ethacrynic acid from poly (lactic-co-glycolic acid) films for glaucoma treatment. Biomaterials. 2004; 25(20): 4279-4285.
19. Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm. 2016; 13(9): 2923-2940.
20. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Invest. 2012; 2: 2-11.
21. Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009; 71:242-51.
22. Mahajan HS, Shah SK, Surana SJ. Nasal in situ gel containing hydroxy propyl β-cyclodextrin inclusion complex of artemether: development and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2011; 70: 49-58.
23. Singh RM, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin Drug Delivery. 2013; 10: 115-30.
24. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275-287.
25. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009; 26(5): 1197-1216.
26. Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006; 110(3): 479-489.
27. Prasad RR, Kumar JR, Vasudha BA, Chettupalli AK. Formulation development and evaluation of allopurinol solid dispersions by solvent evaporation technique. Int J Appl Pharm. 2018; 10:168-71.
28. Mahalingam R, Li X, Jasti BR. Semisolid dosages: ointments, creams, and gels. Pharmaceutical sciences encyclopaedia: Drug Discovery, Development, and Manufacturing; 2010. p. 1-46.
29. Saini R, Saini S, Singh G, Banerjee A, Railmajra DS. In situ gels-new trends in ophthalmic drug delivery systems. Int J Pharm Sci Res. 2015; 6:386-90 108.
30. Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. Design and evaluation of ophthalmic delivery formulations. In: Basic Fundamentals of Drug Delivery, Academic Press; 2019. p. 473-538.
31. Nakanishi K. Pore structure control of silica gels based on phase separation. J Porous Materials. 1997; 4:67-112.
32. Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013; 4: 9-17.
33. Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Inter J Pharm. 2011; 411: 128-35.
34. Wei G, Xu H, Ding PT, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Controlled Release. 2002; 83: 65-74.
35. Moore MM, Schober TJ, Dockery P, Arendt EK. Textural comparisons of gluten‐free and wheat‐based doughs, batters, and breads. Cereal Chem 2004; 81:567-75.
36. Affholder M, Valiron F. Descriptive Physical Oceanography. CRC Press; 2001.
37. Ramotowski RS. Vapor/fuming methods. In: Lee and Gaensslen's advances in fingerprint technology, Boca Raton, FL: CRC Press; 2012. p. 114-45.
38. Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Kumar MR. Design and evaluation of biodegradable, bio-sensitive in situ gelling system for pulsatile delivery of insulin. Biomaterials. 2007; 28:2051-60.
39. Mandal S, Thimmasetty MK, Prabhushankar GL, Geetha MS. Formulation and evaluation of an in-situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Invest. 2012; 2:78.
40. Nagalakshmi S, Anbarasan B, Ramesh S, Shanmuganathan S, Thanka J. An overview-stimuli sensitive hydrogels in ocular drug delivery system. J Pharm Sci Res. 2015; 7:818.
41. Rao MA. Measurement of flow and viscoelastic properties. In: Rheology of Fluid, Semisolid, and Solid Foods, Springer, Boston, MA; 2014. p. 63-159.
42. Wortel V, Taelman MC, Roschzttardtz F, Tharwat F. Tadros, Sandra Léonard, Cornelis Verboom. Colloid Stability. 2007.
43. Bansal G, Suthar N, Kaur J, Jain A. Stability testing of herbal drugs: Challenges, regulatory compliance and perspectives. Phytother Res. 2016; 30:1046-58.
44. Ubaid M, Ilyas S, Mir S, Khan AK, Rashid R, Khan MZ, et al. Formulation and in vitro evaluation of carbopol 934-based modified clotrimazole gel for topical application. An Acad Bras Cienc. 2016; 88: 2303-17.
45. Sapavatu SN, Jadi RK. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int J Appl Pharm. 2019; 11:91-9.
46. Srinu Naik Sapavatu, Rajendra Kumar Jadi. Development of floating drug delivery system for loratadine: in vitro and in vivo evaluation. Int J Pharm Sci Res. 2020; 11:3021-32.
47. M.D. Alghadyan. Diabetic retinopathy: an update. Saudi Journal of Ophthalmology. 2011; 25: 99-111. doi: 10.1016/j.sjopt.2011.01.009
48. B. S. Sathish, R. Murugesan, L.M.I. Leo Joseph, V. Kalist, Ganesan P. Central Retinal Artery Occlusion: The Identification and Segmentation of Retinal Blood Vessels. Research J. Pharm. and Tech. 2019; 12(10): 5011-5014.
49. Bindu Sankar K, Pappa P. A Study to Assess the Knowledge regarding Retinopathy of Prematurity among Staff nurses in a Tertiary Care Centre, Kerala. Int. J. Nur. Edu. and Research. 2018; 6(3): 253-255
50. Arun Radhakrishnan, Gowthamarajan Kuppusamy, Senthil Venkatachalam, Rohithkrishnan Vijayakumar, Nikhitha K Shanmukhan. Personalized Nano Delivery Strategy in Treating Uveitis. Research J. Pharm. and Tech. 2019; 12(4): 1997-2008.doi: 10.5958/0974-360X.2019.00334.2
51. Milana V. Dunaieva, Oleksii V. Pohorielov, Yulia V. Getman, Kateryna V. Mizyakina, Ziwei Wang. New Approaches to Neurophysiological Diagnosis and Treatment of Diabetic VitrealHemorrhages. Research J. Pharm. and Tech. 2019; 12(12): 5723-5728.doi: 10.5958/0974-360X.2019.00990.9
52. Kousalya M., Geetha P., Jesuraja A., Vinoth Kumar M. In-Vitro Study of Anthelmintic Activity of Ecliptaprostrata (L) y various Extracts. Research J. Pharm. and Tech. 2017; 10(1): 58-60.doi: 10.5958/0974-360X.2017.00014.2
53. T. Pearson, G. Manogna, K. Prathima, P. Roshini Mary. Retinal Structure Segmentation using Adaptive Fuzzy Thresholding. Research J. Engineering and Tech. 2019; 10(2): 74-82.
54. Shijian Lu; Joo Hwee Lim. Automatic Optic Disc Detection from Retinal Images by a Line Operator. Biomedical Engineering, IEEE Transactions. 58(1): 88-94.
55. Zhuo Zhang; Beng Hai Lee; Jiang Liu; Wong, D.W.K.; Ngan Meng Tan; Joo Hwee Lim; Fengshou Yin; Weimin Huang; Huiqi Li; Tien Yin Wong, Optic disc region of interest localization in fundus image for Glaucoma detection in ARGALI. Industrial Electronics and Applications (ICIEA). 2010 the 5th IEEE Conference on, Vol., no., pp.1686,1689, 15-17 June 2010.
56. Hoover and M. Goldbaum. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessel. IEEE Transactions on Medical Imaging. 2003; 22(8): 951–958.
57. Varsha R. Sandhan, S.B. Gondkar, R. B. Saudagar. Formulation Development of Ketoconazole Ophthalmic Formulation. Research J. Pharma. Dosage Forms and Tech. 2013; 5(6): 303-310.